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Evanescent couplings are not renormalizable 

R Delbourgo and V B Prasad 
Physics Department, Imperial College, London S W 7  2 8 2 ,  U K  

Received 26 November 1974 

Abstract. Evanescent interactions like +{ #? r(KLMN,}$4KLMN, which disappear in four 
dimensions but which lead to divergences on the basis of power counting, are shown to be 
non-renormalizable. This result is not apparent at the one-loop level when the S-matrix 
elements are simple polynomials in the four-dimensional limit. 

1. Introduction 

If taken seriously, the technique of dimensional regularization (t’Hooft and Veltman 
1972, Bollini arid Giambiagi 1972) compels us to view field theories in arbitrary (21) 
dimensions before one proceeds to the four-dimensional limit 1 = 2. In the course of 
these studies one is led to ‘anomalous currents’ (Akyeampong and Delbourgo 1973a, b, 
1974) such as $@ r,,,,,,}$ in axial current Ward identities, currents which disappear 
for 1 = 2, but whose matrix elements yield the Adler anomalies. Interactions which 
fade away in four dimensions (or, stronger still, cannot even be written down!) have 
been coined ‘evanescent’ by Bollini and Giambiagi (1974). It is the interplay of their 
vanishing and the divergence of Feynman integrals for 1 --t 2 which is responsible for 
the interesting finite corrections to classical Ward identities. 

In this paper we shall investigate a theory which has a primary evanescent interaction 
(unlike Bollini and Giambiagi (1974) we shall adhere to purely local field couplings in  
the Lagrangian itself) namely, LYp1 = G${Z rxLMN}4KLMN, where 4 stands for the 
‘pseudoscalar’ field in n dimensions. On the basis of power counting YP1 is singular 
as x - ~  near I = 2 (signalled by G having dimensions M-’) and one would naturally 
argue that the divergences get worse in higher orders of perturbation theory causing 
the model to be non-renormalizable. However, the interaction itself disappears at 
I = 2, so the question arises whether the theory is really infinite at all and if renormaliz- 
ability is truly lost. We shall prove that the model is indeed non-renormalizable, but 
to arrive at this conclusion we will need to go beyond the one-loop level, ie the bad 
effects are at least of order h 2 .  The basic reason is as follows : at the one-loop level the 
divergent Feynman integrals contain a pole term (I-2)-’ and these multiply a factor 
(1-2) which must be present for all form factors associated with kinematic terms that 
survive the four-dimensional limit (because Yl  + 0 as 1 -+ 2). The product of these 
yields a polynomial in external momenta and masses in four dimensions. At the next, 
two-loop, level we may encounter double integrals which contain second-order poles 
( I  - 2)- but only a single factor ( I  - 2) in the numerator, signifying a divergence. (Another 
way of stating this is to note that the one-loop polynomial suffers a further divergent 
integration with no further compensating zero from Yl.) As these divergences get 
progressively worse in higher orders of G there is no hope of renormalizing the theory. 
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The final result, that evanescent couplings with bad power counting characteristics are 
non-renormalizable after all, is useful in restricting the class of Lagrangian models 
that are viable in the context of dimensional regularization. 

Let us now substantiate these statements by giving a few details of our investigation. 
For our free Lagrangian we shall take a massive fermion $ and a massless boson 4 : 

in order to simplify some of the Feynman integrals without affecting the ultraviolet 
behaviours in question. The fact that Yo can lead to ghost mesons in some of the 
4 components will not concern us unduly, since none arises when 1 -+ 2. The classical 
tree graphs evidently give zero identically in the four-dimensional limit, so the first 
interesting results occur at the one-loop level. In momentum space the vertex factor 
arising from Ypl in a perturbation development is {2a+k, r K L M N }  where p and p + k  
stand for the incoming and outgoing fermion momenta. These have to be combined 
with the propagators S ( p )  = i@ - m)- and D$;::,$4(k) = ih$;;;-4/k2 by the standard 
Feynman rules. As we shall be interested in kinematic terms produced from Feynman 
graphs which survive the passage to four dimensions one can set external momenta 
equal to zero at each vertex. 

We may now determine some simple one-loop diagrams. 

2. Boson self-energy 

To order G2, retaining the part which survives four dimensions, 

Introducing a Feynman parameter x ,  shifting the integral, and dropping all (4 ,  T} terms, 
the usual manipulations lead us to 

As promised the quartic divergence has disappeared owing to the vanishing trace. 

3. Fermion self-energy 

Since we shall presently take this graph to be part of a larger graph the integral to be 
evaluated is 

The calculation of the numerator here (as well as that of the vertex part to follow) is 
greatly facilitated by the methods set out in an appendix. Using the lemmas worked 
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out there the final answer is a polynomial in p : 

C(pj - G2r(3 - / ) (2 / -  1)(2/-3) da({p[3(1- 1)-a(1 + / ) ] + m / ) [ p 2 ~ ( l  - g ) - w n 2 ] ' - '  jol 

4. Vertex part 

if we are only interested in kinematic terms which survive I -+ 2. Combining de- 
nominators with Feynman parameters and using simplification methods outlined 
in the appendix we end up with 

where the form factors X and Y tend to 

X + Yj405nz x G3(p2 + p ' 2  - 4m2) ( 3 ' )  

for four dimensions. 

5. Other one-loop graphs 

The systematics should by now be obvious. Every one-loop graph is divergent due to 
the momentum factor in the vertex, but this is cancelled by a zero caused by the dis- 
appearance of Y1. Always we are left with a polynomial in external momenta whose 
degree increases with G-as it must from simple dimensional analysis. 

We may now wonder if this phenomenon carries over to higher loops and if all 
Feynman diagrams are finite. The answer is 'no' and is most simply illustrated by 
examination of the vacuum graphs. The simplest two-loop graph (conveniently treated 
in x space) does indeed happen to be finite. but this is only an accident due to the mass- 
lessness of our boson. Thus 

Z = G 2  d"x Tr(i8, l -M, , . .M4}S(x){8,  r M 1 . - M 4 } S ( x ) ) D ( x ) .  

Retaining the most singular terms in the integrand and dropping all i ' D  terms upon 
rotation to Euclidean space, 

Z - G 2  j ~ * ' x ~ ' D C ' ~ C " D ~ , ~ ~ D ( /  - 2) 

= GZ dZ'x2'81(2/ - 1)(/ - l ) l ( /  - 2 ) D 3 / x 4  
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+ 192(l - 2)G2 j d2'xD3/x4 

+ ( I  - 2)G2 6 (r2)'-6 dr2 

which is ultraviolet-finite as I -+ 2. Another way of seeing this is to work in momentum 
space, carry out the fermion loop integral, obtaining Il (a polynomial at I = 2), and 
then working out the integral 

In dimensional regularization this is zero for polynomial l7. However, had we chosen 
to give the mesons a mass p we would instead have obtained the divergent answer 

The problem is much clearer at the three-loop level. Consider first the vacuum 
G2(p*)2'- ' / ( I -  2). 

diagram of figure 1. If we carry out the meson loop integrations first we are left with 

Z - G 2  1 d2'p Tr[C(p)(B - m)- C(p)(B -m)- '1 

and since C(p) is finite near I = 2 (see equation (2)) this final integral is bound to diverge 
near four dimensions. A more relevant example is the meson-meson scattering diagram 
of figure 2. Carrying out the fermion loop integrations first 

M = d2'ks d2'k,6(ks+k6-k, -kz)M,(k,k,, ksk6)M,(ksk6, k3k,)/k:ki. j 
But M, is a finite polynomial in k near I = 2. Hence the final integration produces a 
pole term (!-2)-' .  

The inescapable conclusion then is that the higher-loop graphs diverge in general. 
Because these diagrams are associated with higher powers of G they require ever increas- 
ing numbers of subtractions and the theory is therefore non-renormalizable. We can 

Figure 1 .  A divergent three-loop vacuum graph. 

Figure 2. A divergent three-loop meson scattering graph 
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thus class all theories with evanescent interactions and coupling constants having 
dimensions of inverse mass powers as undesirable in spite of appearances. More 
importantly, this means that if we start with a renormalizable theory and happen to 
meet anomalous currents in the context of Ward identities, we should never attempt 
to cancel them off with evanescent counter Lagrangians. 
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Appendix 

Let rCr, be a shorthand for F~M,,,,Mpl, the antisymmetric product of r matrices. In the 
text we meet numerators of Feynman integrals of the type kr(,pri4)W4) where k is 
an internal and p is an external momentum. To simplify expressions like these we 
continually apply the following formulae (Delbourgo and Prasad 1974a, b) : 

is the sr element of the Fierz transformation in 21 dimensions. 
The method is best illustrated by working out two examples : 

when we discard the kinematic term {#, r;,)} which has no place in four dimensions. 
Other Feynman integral numerators can be simplified in much the same way. 
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